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ABSTRACT

Flash memory overcomes some key shortcomings of hard disksdr
(HDDs), including faster access to non-sequential dateewimot
degraded by garbage collection (GC) overheads) and loweepo
consumption. Economic forces, driven by the desire to thice
flash into the enterprise market without changing existfgisare-
base, have resulted in the emergence of solid-state di88Bg),

1/0, thus opening up new challenges in the design of efficharar-
leveling algorithms.

General Terms
Performance, Experimentation, Measurement

flash packaged in HDD form factors and capable of working WitrKeywords

device drivers and 1/0O buses designed for HDDs. Unlike the us

of DRAM for caching or buffering, however, certain idiosyasies
of SSDs make their integration into HDD-based systems nigiat

Flash memory suffers from limits on its reliability, is ander of

magnitude more expensive than the disk, and can be sometireas
slower than the HDD (due to excessive GC induced by high gitien
of random writes). Given the complementary properties ofd4D
and SSDs in terms of cost, performance, and lifetime, thesotir

consensus among several storage experts is to view SSDs @ot g

replacement for HDD but rather as a complementary devickinvit
the storage hierarchy. We design and evaluate such a hystieins
calledMixedStoreto provide: (a) improved capacity planning tech-
niques to administrators with the overall goal of operatmithin

Flash Memory, Wear-Leveling, Enterprise-scale Storageesys,
Modeling, Performance Prediction, Resource Capacityrfthap Dy-
namic Data Management

1. INTRODUCTION

Hard disk drives (HDDs) have been the preferred media fa dat
storage in enterprise-scale storage systems for severatide. The
isk storage market totals approximately $34 billion afiguand is
continually on the rise [48]. Manufacturers of HDDs haverbsec-
cessful in ensuring sustained performance improvemenis wiib-
stantially bringing down the price-per-byte. During theipdecade,
the maximum internal data rate (IDR) for hard disks has veised

cost-budgetand (b) improved performance/lifetime guarantees dur
ing episodes of deviations from expected workloads thraigbe
novel mechanisms(i) adaptive wear-leveling, (ii) write-regulation
and (iii) fragmentation bustingWe implement and validate a sim-

a 20-fold increase resulting from improvements in rotal@peeds

(RPM) and storage densities; seek times have improved bg-a fa
tor of 4 over the same period. However, there are severat-shor
comings inherent to HDDs that are becoming harder to oveecom

ulator for MixedStore and evaluate its efficacy using wetiarded
enterprise-scale storage traces. As an illustrative elaaipMixed-
Store’s efficacy, it is able to reduce the average response fior
an enterprise scale random-write dominant Financial Tigcbout

as we move into faster and denser design regimes. Firsgragsi
of HDDs are finding it increasingly difficult to further impre the
RPM (and hence the IDR) due to problems of dealing with theltes
ing increase in power consumption and temperature [7, 17 S2&-

71% as compared to a HDD-based system. A preliminary invest'bnd’ any further improvement in storage density—anothertan-

gation of adaptive wear-leveling allows us to extend thduldiée-
time of SSD by about 33% in the presence of unanticipatedbimns
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crease the IDR—is increasingly harder to achieve and res|sig-
nificant technological breakthroughs such as perpendicatzord-
ing [44, 34, 8]. Third, and perhaps most serious, despiteriatya
of techniques employing caching, pre-fetching, schedulimrite-
buffering, and those based on improving parallelism vidicafion
(e.g., RAID), the mechanical movement involved in the opera
of HDDs can severely limit the performance that hard diskedas
systems are able to offer to workloads with significant randess
and/or lack of locality. Specific to our interest in this pgpa an
enterprise-scale systempnsolidation(e.g., as proposed/explored
in [14]) can result in the multiplexing of unrelated workbsimpart-
ing/exaggerating the randomness. Furthermore, such lideisol
workloads are likely to exhibit degraded temporal and (nsme-
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as NAND flash [2], magnetic RAM (MRAM) [43], phase-change
memory (PRAM) [19], and Ferroelectric RAM (FRAM) [46]. Sd#
state memory offers several advantages over hard disksr lag+
cess latencies for random requests, lower power consumjéiok

of noise, and higher robustness to vibrations and temperatin
particular, recent improvements in the design and perfoomaf
NAND flash memory (simplyflashhenceforth) have resulted in its
becoming popular in many embedded and consumer devicedl Sm
form-factor HDDs have already been replaced by flash in sane ¢
sumer devices like music players, PDAs, digital cameras,Fash
has, however, only seen limited success in the enterpecale-stor-
age market [32]. Although (i) the aforementioned advanodtash
technology and (ii) its dropping cost-per-byte [11] had several
storage experts to predict the inevitable demise of HDD§ flash
has so far not been able to make inroads into the enterpréde-s
storage market to the extent expected [32].

Transfer Request Size

(c) Write Throughput

1/Os per Second

(d) Lifetime of Flash

Figure 1: A comparison of the performance and lifetime chara-
teristics of representative SSD and HDD. Although MTTFs for
HDDs tend to be of the order of several decades, recent analy-
sis has established that other factors (such as replacementth
fext, faster generation) implies a much shorter actual liféme
and hence we assume a nominal lifetime of 5 years in the enter-
prise. Note that Seq., Rand., Wr., and Rd. denote Sequential
Random, Write, and Read. I/O request size in (d) is a page size
(2KB). Each bar in (a) is shown with 99% confidence interval.

huge asymmetry between the speeds at which reads and wetes m
be performed. As a result, the throughput a SSD offers a write
Solid-state Drives Borrowing a few sentences from an excellentdominant workload is lower than for a read-dominant wor&loa
paper on this topic by Leventhal [32]The brunt of the effort to  Third, flash technology restricts the locations on whichtegimay
bring flash to primary storage has taken the form of solidestisks  be performed—a flash location mustérasecdbefore it can be written—
(SSDs), flash memory packaged in hard-drive form factorsd®ad leading to the need for a garbage collector (GC) for/witmirS&D.
signed to supplant conventional drives. This techniqudlisiag  We will elaborate on these properties of flash in Section 2r- Ce
because it requires no changes to software or other hardwara-  tain workload characteristics (in particular, the pregeoicrandom-
ponents, but the cost of flash per gigabyte, while fallingkjyi is  ness) increase the fragmentation of data stored in flash nyemo
still far more than hard drives. Only a small number of apations i.e., logically consecutive sectors become spread ovesipally
have performance needs that justify the expensets evidence of  non-consecutive blocks on flash. This exacerbates GC cagshe
this, major storage vendors producing flash-based largle-stor-  thereby significantly slowing down the SSD—even to an extgrere
age systems such as RamSan-500 from Texas Memory Systeritspperates slower than a HDD! [29]. Furthermore, this slowd
Symmetrix DMX-4 from EMC, ioDrive from ioFusion, etc. are is non-trivial to anticipate. A given set of random writesynthem-
catering only a select class of applications such as lartgbdae selves experience good throughput, but increase fragtamtehereby
servers rather than the general enterprise storage market. degrading the performance of requests (read or write)iagimuch
Table 1 (all values are based on [32]) presents a comparison tater in future. Finally, to further complicate matterslikka HDDs,
the performance, lifetime, and cost of representative HCE®Ds, SSDs have a life-time that is limited by the number of erasas p
and DRAM used in the enterprise. There are several impoitant formed. Therefore, excessive writing to flash, while patdiytuse-
plications of how these properties compare with each othkxsh  ful for the overall performance of a flash-based storageesystim-
technology possesses a number of idiosyncrasies that haderéd  its its lifetime. This becomes an important concern in agrtse-
the SSD from replacing HDD in the general enterprise mafkiest,  scale employing flash if its workload is write-intensive.
it is evident that there exists a huge gap between the CostfGB

HDDs and SSDE Second, unlike HDD or DRAM, SSDs possess aMotlvanon for MixedStore From the above description, it should

be clear that SSDs are fairly complex devices. Their pecpliap-

1\/.Ve will use the term$SDandflashinterchangeably in the rest of 2010 [1]. This rules out major changes in the role played bADR
this paper. in future systems that employ SSDs. DRAM will continue tanet
2A similar gap exists between SSD and DRAM. Furthermore, iboth of its important roles related to caching and bufferifiere-
is projected to worsen in the near future: up to a factor of #3 b fore, we will not compare these two devices in the rest of phiser.




erties related to cost, performance, and lifetime make fftcdit ically, within the FTL layer) including reduction of fragm&-
for a storage system designer to neatly fit them between HQD an tion within the flash (fragmentation buster) and a novel ephc
DRAM. To illustrate the complexity of the relationship beten HDD of adaptive wear-levelingAs an illustrative result of our empir-
and SSD, we perform a simple experiment using the devices de- ical evaluation of the efficacy of MixDyn, it is able to proipn
scribed in Table 2. We send raw I/O requests to these actual de the life of SSDs in MixedStore by about 33% in the face of an
vices and measure throughput and access latencies. Nexisave unexpected increase in I/O activity.
our MixedSim simulator (described in detail in Section 3d gsti- e Finally, we present ideas on how MixPlan and MixDyn could act
mate the useful lifetime of flash-based SSD in MixedStore. in concert and present a preliminary validation and evalnatf

As has been observed in other recent research, under cgddin all components of MixedStore.
load conditions, an SSD can perform worse than the HDD [29]. A
look at Figures 1(a)-(c) provides an illustration of sucthdngor ~Road-map The rest of this paper is organized as follows. In Sec-
and calls for careful design to gainfully utilize them in gamction  tion 2, we present the basics of flash technology and diselesgant
with HDDs in the enterprise. The degrading lifetime withreesed ~related work. Section 2.2 provides a bird's eye-view of therall
write-intensity, as shown in Figure 1(d), may result in patune re-  MixedStore architecture and how its two components, MirRiad
p|acement of these devices, addmg to dep|0yment, procﬂn‘Emnd Minyn, interact. In Sections 3 and 4, we describe these @mp
administrative costs. Note that we have picked a lifetimb péars ~ nents and then evaluate them individually as well as wheimgct
for a HDD just for illustrative purposes. An excellent stunfythe  together in Section 5. Finally, we present concluding réwian
useful lifetimes of disks based on data from real entergsisde sys- Section 6.
tems appears in a paper by Schroeder and Gibson [45]. Fittadly
low throughput offered by SSDs to random write-dominatedkwo 2 ~BACKGROUND AND OVERVIEW

loads (Figure 1(c)), which are frequently encountered ermgmise-
scale systems [29], necessitates intelligent partitprof data in =~ 2 1 Background on Flash
such hybrid environments while ensuring that the manageouests
do not overwhelm the performance improvements. As alrekdy aBasics of Flash Memory TechnologyFlash is a unique storage de-
luded to and explained in more detail in Section 4, compawetleé  vice since unlike the HDD and volatile memories, which pdavi
HDD, an SSD require a longer history to be incorporated intera  read and write operations, it also providesesiase operatio39].
formance predictor. Modeling these characteristics israxplored  Salient characteristics of these operations are as foll@asse op-
area and a significant part of our work as well as the foundaifo erations are performed at the granularity dblack which is com-
the overall functioning of MixedStore. posed of multiplepages A page is the granularity at which reads
and writes are performed. Each page on flash can be in oneeef thr
different states: (iyalid, (ii) invalid and (iii) free/erased When no
data has been written to a page, it is in the erased state. t& wri
o We propose MixedStore, a simplified hybrid storage system co can be done only to an erased page, changing its state to Eatide
taining HDDs and SSDs sharing the I/0 bus. Besides this harthperations (1.5ms) are significantly slower than readsariThere-
ware, MixedStore comprises: (i) @pacity planner(MixPlan  fore, out-of-placewrites are performed to existing free pages along
henceforth) that makes long-term resource provisionimgséEns  with marking the page storing the previous version invalididi-
for the expected workload; it is designed to optimize the 6bs  tionally, write latency can be higher than read latency bytaia
equipment that needs to be procured to meet desired perioema factor of 4-5. The lifetime of flash memory is limited by themu
and lifetime needs for the workload and (iijdgnamic controller  per of erase operations on its cells. Each memory cell tiipibas
(MixDyn henceforth) whose goal is to operate the system in dey |ifetime of 10K-1M erase operations [L0MWear-levelingtech-
sirable performance/lifetime regimes in the face of deviet at  niques [23, 25, 33, 6] are used to delay the wear-out of the firs
short time-scales in workload from those anticipated byRlix.  flash block. The time-granularity at which wear-levelingistried
¢ We develop simple statistical models that MixPlan empldy®ese oyt impacts the variance in the lifetime of individual blsgnd also
models are used in conjunction with MixedSfrte simulator we  the performance of flash: the finer the granularity, the snahie
have developed for MixedStore by enhancing DiskSim [13]) toyariance in lifetime.
validate the efficacy of MixPlan for a variety of well-regart
real-world storage traces. We expect MixPlan to providée’su

Research Contributions This paper makes the following specific
contributions.

The Flash Translation Layer (FTL) The FTL is a software layer

of-thumb” to administrators of hybrid storage systems winexk- that translates logical addresses from the file system mysipal ad-
ing provisioning decisions. As an illustrative result, Bian is ~ dresses on flash FTL helps in emulating flash as a normal bleck d
able to identify close to minimum SSD capacity needed to raeet Vic€ Py performing out-of-place updates which in turn hetpbide
specified performance goal for a realistic random-write thame (1€ €rase operation in flash. The mapping table is storedrimadl,s
workload (Financial Trace [41]). fast SRAM. These FTLs can be implemented at different geaiul

e We implement MixDyn in our simulator. In a MixedStore pro- 1S of how large an address space a single entry in the mahife

totype, MixDyn would have two components: (a) an enhance§@Ptures. Page-based FTLs map the logical page number oé-the
block device driver that employs online statistical periance ~ duest sent to the device from the upper layers such as filerayst

and lifetime models for SSD (and a performance model for HDD*O any physical page on flash. However, such translationinesja
to dynamically partition incoming workload among the SS@i an 1279€ Mapping table to be stored in SRAM. At the other extréma
HDD, and (b) two algorithms within the SSD controller (sgieci _block-level _FTL scheme, only the logical block_number isglated
into a physical block number whereas the logical page nuroffer
3Although our simulator is ready for sharing with other resbars, set within the block remains fixed, thus reducing the mappanfs. .
we are %nable to provide its lilRL due togdouble-blinded reyiewHOV\.'ever’ SInce a given qu|ga| page may now be pla}(.:e.d qnly na
The name of our simulator has been changed to preserve aitgnym Particular physical page within each block, the possipiit finding

However, reviewers interested in our code and data are weldo such a suitable page (at this fixed offset) increases.
approach us with the permission of the chairs. To address the shortcomings of the above two extreme mapping
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Figure 2: Depiction of various components of MixedStore andhow they interact.

schemes, researchers have come up with a variety of aliernat Intuitively, the components of MixDyn operate collectiyeb take
Although many schemes have been proposed [20, 9, 30, 24, 3Xorrective data management decisions in MixedStore toradioe
they share one fundamental design principle. Each of tieeshyi-  desired performance and lifetime needs despite (i) prowisg er-
brid between page-level and block-level schemes. They logicallrors made by MixPlan and (ii) deviations in workload chagaistics
partition their blocks into two groupsData BlocksandLog/Update  and device behavior.

Blocks Data blocks form the majority and are mapped using th

block-level mapping scheme whereas the log blocks are ndaype 62-3 Related Work

ing a page-level mapping style. A recent page-based FTLnsehe

called DFTL [16] utilizes temporal locality in workloads tver- Flash as Cache and Write-Buffer A lot of research has been con-

come the shortcominas of the vanilla page-based schemeob Stducted to improve performance of HDDs using non-volatilenme
9 page- y ory. eNVy [49] uses non-volatile memory for data storage nehe

ing only a subset of mappings (likely to be accessed) on thigdd ) X .
SRAM and stores the remainder on the flash device itself. We enﬁgtstzrl)sl obggléf,deigQgéstzﬁ?ndpizgidjgﬁ :)heerfv(\)/ :&ea%\éirhm% U
ploy DFTL in our evaluation of MixedStore. tecture in which flash is used as a conventional disk cachéders

2.2 Overview of MixedStore explored in [36]. Our work goes beyond merely using flash as a

Figure 2 depicts the interaction between various compsneht cache/write-buffer—rather than treating flash asibordinate to the

. . disk MixedStore views these @mplementargtorage media. Bis-
MixedStore. Besides the storage hardware (HDDs, SSDs,/@nd |
buses) shown in the figure, MixedStore consists of two majfir s son et al. [5] have explored the use of a flash-based NVRAM as a

ware components. The first of these is a long-term resoumé-pr write buffer to reduce write latency of hard disks for degkenwi-
sioner called MixPlan. We envision MixPlan to be a tool thad ronme_nts. The_y employ Vo redl_rectlon FO reduce seekingtmax
enable storage administrators to provision both kinds efcés in frpm disk by d'reCt'ng request§ likely ta incur long seekstte on-
cost-effective ways. The decision-making of MixPlan woalttur disk NVRAM. We view _the Mlnyr] component of our sy_stem as
at coarse time-scales (months to years) corresponding ¢o yio- .conceptua'lly clqse to BI'SSOH e.t al’s work and would pe s
curement and deployment decisions are made. MixPlan ersnplo' comparing MixDyn with their I/O redirection technique the

simple statistical models to make its provisioning decisiassum- t_uturs(,e. A(\jlgety dlflflerean IS tht?]t ofur flash tmt(_)del (fiﬁyetlﬂopedSm:;j
ing a priori knowledgeof key characteristics of the workload ex- lon 3) additionally captures the fragmentation within Hfsause

pected till its next invocation. MixPlan is intended to ceffiectively by random writes) and incorporates it into its redirecti@tigion-

provision devices to allow MixedStore to (i) adhere to thefqre making. This mechanism will be described in Seciion 4.

mance needs of hosted workloads and (ii) meet useful lifetie}d  Flash-specific ImprovementsFlash Translation Layer (FTL) is one
quirements specified by the administrator, under theseleadkas- of core-engines in a flash-based SSD. The state-of-theféus B,
sumptions. We elaborate on various components of MixPl&emy 30, 24, 31] are based on log-buffer based approaches andingti
tion 3. The second component of MixedStore is a dynamic conperformance by trying to reduce costly GC overheads. Amathe
troller (MixDyn) that operates at significantly finer timeages (mil-  thogonal approach of exposing flash-based devices to theyfitem
liseconds to minutes). MixDyn employs statistical modelsger-  has been proposed. JFFS2 [22] and YAFFS2 [50] are the most pop
formance of SSD and HDD to make dynamic request partitioningilar file systems optimized for flash memories. Kim et al. [2&}e
decisions—these decisions are made at request-levellgriam(mil-  developed a flash device buffer management scheme to reduge f
liseconds to seconds). Additionally, it employs novel téghes for mentation caused by random writes. Different SSD desigrisdn
data management within the SSD (write regulation, fragatért  ing interleaving requests to obtain parallelism and gameic. have
busting, and adaptive wear-leveling—all to be elaborate&eéc- been proposed to improve flash device performance [40].hEByrt
tion 4) that operate at the granularity of several minutedors. Managed Flash Technology (MFT) [35] developed by EasyCo is a



flash SSD acceleration software which tries to solve flasbdaan
write problem by converting random writes into sequentiaites
at block driver level. Transactional flash (namid-lash recently

3.1 Problem Formulation

The objective of capacity planning is to minimize the cost of
MixedStore (deployment, management, maintenance etdl¢ meet-

proposed by Prabhakaran et al. is a novel SSD that uses flash mejng the service level agreements. These constraints canfzan

ory and exports a transactional interface to the higheztiseftware
[42].

guaranteeing some minimum performance requirements twirggl
management and re-deployment costs, ensuring systerbiliglia

Flash in the Enterprise Kgil et al. [26] have proposed a new ar- etc. For the purpose of our study, we try and minimize theajepl
chitecture name&lashCachevhere they consider replacing a large Ment cost (in terms of $) subject to a combination of both guerf
DRAM with a combination of a smaller DRAM and NAND-based mance and re-deployment constraints. We use average system

Flash. Their goal is to save memory power consumption whdetm

sponse time as a metric of MixedStore’s performance and tieisn

ing performance requirement by using larger flash and a emall Metric as the systemBerformance BudgetAs described in Sec-

DRAM. Sun Micro-systems has proposed a storage archigeatur
corporating flash-based SSDs as intent-log devices andcesdmbs

tion 2, the blocks in SSDs become unreliable beyond 10K-1ader
cycles. This poses a significant challenge for a system asiran

providing improved performance along with reduced powen-co tor whose objective is to keep system re-deployment frequend
sumption [32]. They propose to use their ZFS file system [51] aCosts under control. We capture these objectives in termad de-
an interface to these SSDs. We view Sun’s proposed hybrhi-arc time Budgefor the system, which is the time between successive ca-

tecture as the closest in essence to MixedStore and beliat¢hie
models and techniques developed here are worth implengeatid
evaluating in the context of their system. Lee et al., [28qmsed an

pacity planning decisions and equipment procuremendfiasion.
We formulate our capacity planning problem as a means of-mini
mizing the cost of acquiring/installing MixedStore whilegting the

in-page logging approach in a flash-based DBMS to reduceorand @dministrator/workload-specified performanég(.q,.:) and useful

write overhead by updating in-place in the database bufféth@nce
reducing garbage collection overhead. A key contributiotiis pa-
per is the observation that workloads with extensive ranuess can

lifetime budget {puaget). Let Cssp indicate the cost of flash-
based SSDs and ar@; pp indicate the cost of HDDs in Mixed-
Store. Apart from these, costs associated with power copsom

cause an SSD to perform worse than a HDD. We find similar resulitheérmal consumption (cooling), other maintenance and gemant

in our evaluation and build models that attempt to captuseabpect
of an SSD’s operation.

Finally, in a recent work from Microsoft Research, Narayaea
al. [38] have also looked at capacity provisioning in hytstdrage
systems by utilizing a number of real data center tracedadtaito
them. Their work explores the cost-benefit trade-offs oiowes flash
and disk capacities/configurations for these real tracdserel are
several key differences between our contributions. Rivetdo not
investigate what they call a “two-tiered” hybrid architeie (using
SSDs as write buffers/read caches) partly because sucsé lidee
already been explored in the papers cited earlier. Secamdomot
explicitly capture power consumption in our formulationMikPlan
(for reasons described in Section 3; indeed as we shall seénd-
ings are similar to theirs on this front). Third, while theynait that
flash wear-out needs to be considered while using it as a brifer,
they do not explore any specific ways of doing this. We incoafe
this in the form of lifetime budgets in MixPlan and our dynami
workload partitioning (MixDyn) employs a variety of teclgoies
to adhere to these budgets. Finally, our study goes beygmatea
ity planning—MixDyn employs a combination of model-drivas
well as reactive techniques to operate our hybrid systeranugiden
performance/lifetime budgets despite varying workloa@szerall,
their work is complementary to MixPlan. Unlike their evaioa
with real traces, we are admittedly restricted in our evédnato
publicly-available benchmarks and traces and would grémthefit
from access to their real traces.

3. CAPACITY PLANNING: MIXPLAN

activity form the recurring costs denoted 6%....-. Then the total
MixedStore costCyrizedastore 1S the sum of these individual costs.
Equation 1 shows the formal description of capacity plagnihis
easily seen that the above optimization problem reducesrtiomz-
ing the cost of SSD for fixed size of HDD available in a Mixed®to
system?

Minimize Cisizedsiore

P]VIi;vedSto're 2 PBudget

Subject to
) { LitizedStore 2> LBudget

@)

WhereChisizedstore=Cssp + Cuapp + Crecur

We have shown in another work (reference withheld to maintai
anonymity) that the savings in power consumption accruedtby
lizing SSDs in enterprise-scale environment are not siganifi. The
same has been corroborated by Narayanan et al. [38] in #wnt
work. Furthermore, information on how the management/ teain
nance costs for HDDs and SSDs compare is still sparse and-inco
clusive. Hence, we do not consider recurring coétge..,) in our
current work. The large difference in costs of HDDs and flaaked
SSDs (as shown in Table 1) allows us to reduce the capacityiplg
problem to SSD capacity determination problem for a knovzedi
(constant) HDD-based storage. However, the performanddifen
time of flash-based SSD is highly dependent on not only thé-wor
load characteristics but also the internal intricacies astlsuch as
design of FTL, efficiency of GC etc. This provides a mandateffe
design of a robust capacity planner (MixPlan) tool for usstaoyage
system designers. In the next sub-sections, we describsdtisti-
cal models utilized by MixPlan to provision SSDs in Mixed&to

Given the large price gap between SSDs and HDDs, it is use3.2 Modeling Performance and Lifetime of Flash

ful to be able to determine appropriate capacities of theséces

Memory for MixPlan

for the workload the System eXpeCtS to SuppOI’t. We define this We emp|oy a "black-box" mode”ng approach for estimating a

process of determining the right size of devices in MixedStas
capacity planning As will be illustrated in Figure 9, both under-
provisioning and over-provisioning of flash memory leadsffi-
cient storage utilization, thus adversely impacting th&-to-benefit
ratio for MixedStore. Therefore, the goal of capacity piagns to
minimize this discrepancy so that overall storage investroest can
be optimized.

given SSD’s useful lifetime and performance. Our model reai@

A key limitation and difficulty that the reader should noteoab
our capacity planning is that it provisions SSD capacitythaen-
tire expected workload rather than the subset of it that is erpdct
be incident on the SSDs. Clearly, MixPlan over-provisio&OSa-
pacity, potentially heavily. Improving our provisioning ¢his front
is non-trivial and part of ongoing work.



assumptions about the inner configurations (such as FT L)

SRAM cache size etc.). We do find its efficacy varies dependinge

on the internals of the SSD. For example, the predictor pego
better with our page-based like FTL than other state-ofatieny-

brid FTLs. We do not elaborate on these here due to space co

straints. For this purpose, we need to identify statidgicsignif-
icant workload characteristics that impact the SSD’s ilifiet and
performance. Performance is directly impacted by datanieaga-
tion caused by random writes which invoke costly GC openatio
Moreover, high write intensity increases the number of emgs-
erations required to reclaim invalid space on flash, thusiaied
lifetime of blocks. Based on these observations, we conglue
following workload characteristics as significant indegent vari-
ables: (i) average read/write ratio, (ii) spatial locatigptured in the
form of average sequentiality among requests, (iii) averagjuest
inter-arrival time, (iv) average request size, and (v) flaslization
defined as the ratio of the working set size to the total flash si

3.3 Regression-Based Modeling

Using multiple linear regression, we first find significarggictor
variables which affect the variables being predicted: (@rage sys-
tem response time (ms) for performance budget, (i) avebdaek
erase rate (erases/second) for lifetime budget. The wmdgras-
sumption on this linear regression modeling approach isaarap-
tion of linearity. Itis assumed that the relationship bedwegariables
is linear. Moreover, there is a normality assumption thatresidu-
als follow normal distribution). We start with the generapeoach
in multiple regression of finding significant predictor \abies while
plugging in as many predictor variables as we can think oforin
der to avoid multicollinearity problems, we also perforniretation
analysis on predictor variables to ensure that they aradgigendent
variables.

Performance Model for SSD We use average /O system responseT
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Figure 3: Validation of performance and lifetime models com
pared with values measured using MixedSim. Each bar of
MixedSim in (a) is shown with 99% confidence interval. The 99%
confidence intervals of MixedSim in (b) are very small and han
not shown.

where (V,.4) represents the average of a particular workload
characteristic selected from a set of n parameters distesamdier
(Section 3.2) and is a small error. The coefficientsy b1, ... ,b»)
are estimated during the learning phase of the experiments.

3.4 Validation

In this sub-section, we validate our models by comparindgrsga
the actual values measured using MixedSim. We generatege lar
number of synthetic traces by varying workload charadiessle-
scribed in Section 3.2 to train the models and randomly s8le@
of these traces to form our training set. The adjusted Rrequia
found to be around 90% for both the multiple log-linear med2L].
he average error rate is about 25% for the training set.

time (Raqv4) as a predictor of flash performance. 1/0 system response

time represents the time interval between the issuanceqpiest
to the SSD by the I/O driver and its completion notificatiorthe
driver. It includes queuing delay, bus delay and contralerhead
in the device. We first experimented with a multiple linegression

based model. Upon finding this model unsatisfactory, we mhove

towards a slightly more complicated multiple log-linearaeb[21].
It can be represented as
log(Ra’ug) = ao + Z ag - Wavg(i) + €1 (2)

i=1

where Wa.4) represents the average of a particular workload

characteristic selected from a set of n parameters distiesdier
(Section 3.2) and; is a small error. The coefficientad, a1, ... ,
an) are estimated during the learning phase of the experiments

Table 3: Some of the synthetic write-only workloads
(W1,W2,W3,W4) used to train the performance and lifetime
models and a realistic Financial Trace workload used for evia
uating the models.

‘ Index ‘ Sequentiality | Request Size[ Utilization ‘ Inter-Arrival |
(Ratio) (Sectors) (Ratio) (ms)
w1 0.10 41.54 0.89 322.18
w2 0.70 16.90 0.89 79.90
W3 0.30 115.71 0.94 80.24
w4 0.70 115.44 0.58 319.74
Financial 0.03 6.57 0.91 164.49

We validate our performance and lifetime models by comgarin
their results with the corresponding values measured udirgd-

Lifetime Model for SSD Erase rate (block erases per second) deSim. Table 3.4 shows the salient characteristics of somieeo$yn-
noted byE..,, represents the lifetime of a flash device since eacfihetic and real workloads. We choose write-only synthetices for

block typically has a life of about 10K-1M erase cycles [18k in

the case of performance modeling, we start by fitting a meltip-

ear regression model. Again, we observe that a multiplditegar

regression technique, similar to the one used for perfoceandget
is able to model the lifetime budget. The similarity betwées two
models arises from the fact that higher response times angcéidn

of garbage collection which require block erases and hanpadt
lifetime. Thus, the lifetime model can be represented as

10g(Eavg) = bo + Z b; - Wavg(i) + €2

i=1

®)

validation since flash performs very well for read dominawtky
loads. Moreover, lifetime is not an issue for such workloaihse
they encounter very few erase operations. For W2, the anrthre
performance model is only about 4% whereas it rises to abb¥t 2
for W3 which has the highest erase rate and response timesvalu
(owing to large request sizes and low inter-arrival timaghe traces
shown. For the Financial trace [41], the observed perfoomas
well as lifetime errors are high. The major cause of thisréigancy

is that our black-box model assumes no information abouirthe

5Adjusted R-square defines the proportion of variabilityt iBaac-
counted for by a statistical model. Unlike R-square, it anbreases
if a newly added predictor statistically improves an erigtinodel.



ternal state of the flash and hence is liable to errors. Argualy
incorporating more information about flash internals weioggrove
our model further. However, as explained in Section 2.2Mixed-
Store, having a MixPlan suffices so long as MixDyn can hartute t
inaccuracies in the former models. To summarize our vatidat
we have demonstrated the possibility of developing a pevémice
and lifetime estimation methodology with reasonable amcyirvith
simple log linear regression models.

3.5 Why MixPlan Alone Doesn’t Suffice
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Figure 4: Capacity planning for Financial-like trace. Note that

we increase arrival rate as shown in legends. "A" denotes thia
the performance and lifetime budgets provisioned by MixPla.

With increased workload arrival rate these guarantees are io-

lated.

Workloads are known to exhibit variation from their predittbe-
havior. In such circumstances, capacity planning aloneisuffi-
cient to meet the lifetime and performance budgets. Fig(ag @)
show the impact of increased arrival rate on performancelifad
time budgets for a write-dominant workload. If the systersigleer

MixDyn. Although the large-body of work on modeling disk per
formance is of use here, there are certain salient novelctspé
flash operation that MixDyn’s SSD model must capture. Perhap
the most important such feature is that unlike a dek,SSD per-
formance model needs to incorporate a much longer hisginge a
large enough number of random writes (that might themselxps-
rience good performance) might cause fragmentation ower &nd
the resulting GC invocation would then degrade the perfocaaf
requests that arrive much later.

Again we start with identifying the crucial workload chatexts-
tics which play a major role. However, contrary to the earlitx-
Plan performance model here, we work with a sliding windoweof
quests. This sliding window acts as a short term history gfiests
and enable us to make fair short term decisions. The mainloamtk
characteristics used in the model areAliprage Read to write ratio
of a window of requests, (iippatial locality—average sequential-
ity of a window of requests, (iiilRequest inter-arrival timeand (iv)
Current request sizeSince this performance model needs to make
predictions about the performance of requests in the imatedi-
ture, and as seen how performance depends on long-termyhist
need to capture and preserve certain aspects afutrent stateof
the flash device. However, this information about state efftash
device might require information about SSD internals thaymot
be feasible (e.g., in the SSD that MixedStore assumes).

In order to build a feasible as well as efficient black-boxf@er
mance model, we use the history of previous device servioestas
an indicator of flash device state. For simplicity, we useaher-
age of the service timesS{.4). Moreover, we use system response
time (Rcurrent) @S @ measure of flash device performance. Thus,
our multiple linear regression model can be represented as

Rewrrent = co + ¢1 - Wyindow + €2 - Savg +e€
(X521 56)

Sa'ug - w

4)

had provisioned the system at point A to keep the flash lifetim Wheree is a small error andlV,,inqo is the workload during win-

around a disk’s useful life while satisfying the performanteeds,
these guarantees do not hold if the workload changes. Wgthehi
intensity of writes, the garbage collector is invoked mdierg thus
degrading the system’s performance. Moreover, it resaoltigher
number of block erases, reducing the flash lifetime. Thusyrave
quire additional sophisticated data partitioning mectasi which
can dynamically adapt to these changing workload enviranisne
In the next section, we describe some techniques employexdiby
dynamic controller (MixDyn) to meet the various budgets &mas
work in synchronization with MixPlan.

4. DYNAMIC CONTROLLER: MIXDYN

We have established the need for a fine-grained control mecha
nism which should be able to manage the requests and henaeens

sustained throughput from the storage system which is abieeet
our lifetime and performance budgets. In this section, weuss the

core of MixDyn—the performance prediction module— and then

elaborate other components, namé@)yFragmentation Buster(ii)
Write Regulator and(iii) Adaptive Wear-levelewhich try to ensure
that the guarantees made by MixPlan are upheld.

4.1 Performance Prediction Model for SSD

ow w. The coefficientsdy, c1, c2) are estimated during a learn-
ing/training phase of our experiment which consists of laélthe
workload. We believe converting our learning-based ptégticech-
nique can be easily adapted to operate on-line, althoughowet
evaluate that here.

4.2 Evaluation with Dynamism-Aware Perfor-
mance Prediction Model

Table 4: Statistics for Performance Prediction of Flash forFi-
nancial Trace. Correlation between all predictor variables are
almost zero.

[ [[ Coefficients | Standard Error [ P-value ]

Multiple R 0.98 In‘lercept i 0.13145 0.002982131 0

R Square 0.98 Prsev'c’,us [T),ev'ce 001223 | 0.003517166 | 0.000505959
Adjusted R Square 0.98 erV|C§ |me‘
Real/Write Ratio -0.66566 0.019041997 8.0937E-263
Standard Error 0.27 T

Observations 32289 Sequenn‘a ity -0.78597 0.159642759 8.55189E-07
Inter-Arrival -0.00007 8.29538E-06 3.00991E-16

Request Size 0.12127 0.000381543 0

(a) Regression Statistics (b) Significance of Predictoiatdes

The performance of the SSD is highly dependent on the work- We use the Financial trace [41] and TPC-H [52] workload té-val

load incident on it. Since out-of-place updates are peréarion the
flash, GC resulting from fragmentation has an important chpa
response time. We build upon our learning from capacity mtam
and try to develop time-scale performance models suitail¢hie

date our model. Contrary to our performance predictor forfn,

our empirical evaluation suggests a simpler multiple limegres-

sion to be satisfactory. For Financial trace, we observesasured
R-square value to be 98% (as shown in Table 4). We compare the
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Figure 6: Performance degradation due to fragmentation on
flash and subsequent improvement with fragmentation buster
“Flush” indicates periods of migration activity from flash to
disk. Each point is shown with 95% confidence interval.

accuracy of our model with a simple baselinedaat value-based
prediction model for SSD which uses the last service timaevals
its prediction. Figure 5 demonstrates the superior priegicfuality
of our model for both TPC-H and Financial trace. Our modebigsa
to predict the state of the flash better than the last valudigior and
hence shows much smaller error rate.

4.3 Fragmentation Busting

As described in Section 1, small random writes increasefdzga
mentation on flash, thus exacerbating garbage collectierhead.
We demonstrate this impact in Figure 6 by alternating setipleand
small random write requests for synthetic workloads. Béthand
"C" are regions with sequential write activity. Howevee firesence
of random writes in region "B" leads to data fragmentatiorflash,
thus increasing the average response time for requests'ini'Gr-
der to prevent such fragmented zones on flash, we develophaiius
methodology calledrragmentation BustingAs shown in Figure 6,
flushing some portion of these small random writes to diskigpe
ically moving 25% of random writes for this experiment), wanc
reduce the variation in response times and improve the jpesiace.

Workloads are known to exhibit periods of idleness betwegstb
of requests [37] providing opportunities for fragmentatlousting.
Lot of research has gone into developing techniques toifgleantd
utilize these idle periods. Specifically, Mi et al. categed work-
loads based on idle periods into tail-based, body-basetdahdttail
based [37]. and found the presence of heavy-tailed intérahtimes
in enterprise-scale workload implying the presence of ificant
idle periods along with those of intense activity. Currgntle do not
incorporate any specific policy in our MixedStore desigrushing
requires co-operation from the device since the effectia@ping

tables are present within the device and are not exposedtén ou
systems. Thus, only a part of the flushing mechanism, spaityfic
the scheduler, can be implemented with MixDyn. In order tcidie
which data needs to be flushed, the device controller neegimto
the pages causing this fragmentation. We maintain a LRUstLea
Recently Used) list of the valid pages using the logical pagaber

of the requests. This represents the cold data on flash amigita-
tion to disk does not have any major impact on MixedStoreis pe
formance. When the idle period kicks in, the fragmentatiaostér
directs the flash controller to start flushing the data fragse A
small DRAM-based buffer needs to be maintained so that any re
quest to the data being migrated can be serviced. Since we flus
mostly cold data, such requests are rare. Moreover, singadhiv-

ity can be delayed until an idle period is available, in thrkwe
consider it a pure background activity that does not interfgith

the servicing of requests and hence we ignore its possiiedig
effects on overall performance.

4.4 Handling Uncertainties in Enterprise-scale
Workloads

As described in (Section 3.5), one of the challenges in dégpac
planning is the unpredictability in workloads. A prolongadd/or
recurring period of unanticipated random writes detriratyntim-
pact on lifetime of flash. In this sub-section, we develoftegues
for handling sudden unanticipated bursts in requests.

Write Regulation The projections made by MixPlan are dictated
by normal workload characteristics and are subject to timia dur-
ing operation. The write regulator monitors the erase ratdarks
and comes into action if sustained violations (due to ucgrated
write activity) are observed. This is essential to presémedifetime
budget requirements. On detecting violations, it startsgoilate the
writes being sent to flash by over-riding the decisions madthée
performance model in MixDyn. Currently, we use a policy whic
randomly picks the requests being sent to flash and divezta th
disk instead. As part of future work, we plan to develop mare s
phisticated models.

Adaptive Wear-Leveling As described in Section 2, wear-leveling
requires swapping of data between blocks which have higbeera
count with blocks which have relatively lower erase countisT
swapping operation results in additional erase operatidrish re-
duce the lifetime of blocks [6, 33]. These extra erases tigotay

a significant role towards the end of a flash device’s life amd i
deed accelerate its death. Traditional wear-levelingrélyns de-
fine the lifetime of flash based on the reduction in the capadfit
the device as compared with the original capacity and heimoe a
to achieve uniform distribution of erases across all blomkdglash.
We propose a paradigm shift in this philosophy by definingube-
ful lifetime of flash in hybrid environment to be the time fithich
MixedStore is meeting the performance/lifetime guaramte€his
provides us the flexibility to allow wear-out of few blocks fiash by
temporarily halting wear-leveling mechanism if it helpsneeting
the overall lifetime budget. We propose adaptive wear-leveling
mechanism-a novel idea to the best of our knowledge—which, like
the write regulator monitors the erase rate of blocks anohdyreri-
ods of prolonged unanticipated write activity, co-ordestvith the
flash controller to prevent the extra erases caused by wweelifig
by temporarily halting the leveling algorithm. Once norrti@ ac-
tivity starts (as projected by MixPlan to uphold the lifeéiroudget),

it allows the device to revert to its wear-leveling mechanis

5. EVALUATION



5.1 Experimental Setup and Workloads lessons learnt here to expand our evaluation and undeirsgaofl

. . ) hybrid systems.
Workloads Table 5 illustrates the characteristics of enterpriséesca

workloads used in our evaluation. We employ a write-domtiiéd 5.2 Validation of SSD Simulator
trace from an OLTP application running at a financial insit[41]
made available by the Storage Performance Council (SP@yehe _ Write Read

forth referred to as th&inancial trace We also experiment using % 0N I Realssb1 2~ % o RealSSb1 —2~
Cello99 [18], which is a disk access trace collected fromnaeti £ | . Fasnome %~ | E 400 Fashams %
sharing server (exhibiting significant writes) which wasning the 8 140 B 8
HP-UX operating system at HP labs. TPC-H [52] is is an ad-hoc,§ o IR g o
decision-support read dominant benchmark (OLAP worklaad) £ .| - € 2o
.. . . X
amining large volumes of data to execute complex databasgegu & oo Mo e e 2
. . [2) o . - [2) A,
Finally, we also use a number of synthetic traces to studgffieacy g 400 B NN g 100
. . . . © . a8 . © v
of MixPlan and MixDyn for a wider range of workload charatger g .- g | o8 | T TR
H ihi ~ < 00 02 04 06 08 10 < 00 02 04 06 08 10
tics than thOSE eXthItEd by the above real WOI’|d traces. Seauentialitv (in Block Accesses) Seauentialitv (in Block Accesses)
(a) Write Behavior (b) Read Behavior
Table 5: Enterprise-Scale Workload Characteristics. All \alues 1o 20 Sequentially, 0% Writes 1o 206 Sequentally. 20% Wres
are presented as average. Sequentiality refers to requedtslog- 77 e
ically consecutive addresses. Z 080 [/ ' Zz
Q / 1.00 Q
Request Size] Read | Sequentiality | Inter-arrival 3 ¥ e 3
Workloads ‘ (KB) %) (%) Time (ms) g os0 / j 2
Financial (OLTP) [41] .38 9.0 2.0 133.50 2 o0l 4 £
Cello99 [18] 5.03 35.0 1.0 41.01 E ‘ | 2
TPC-H (OLAP) [52] 12.82 95.0 18.0 155.56 3 oz [/ doaia® RealssDt o | O 020[) Real SSD1 -4
I Real SSD2 —o— Real SSD2 ——
FlashSim1 —&-— FlashSim1 —&-
0,008 FlashSim2 —-x—- 0.00 FlashSim2 —-x-—
0 1 2 4 8 16 32 64 96 128 128+ 0 1 2 4 8 16 32 64 96 128 128+
Svystem Response Time (ms). Loa-scale Svystem Response Time (ms). Loa-scale
Table 6: Default simulation parameters (c) Random Write Dominant (d) Sequential Read Dominant
Flash Device i o i .
Parameter Value Hard DIk Diive (FDD) Figure 7: Validation of our SSD Simulator. Note that in the
Flash Type Large Block Parameter Value legends, Real SSD1, Real SSD2, FlashSim1, and FlashSim2 de-
Page (Data) 2KB , TBM note Mtron’s SSD, SuperTalent's SSD, a SSD using a page-base
Page (OOB) 64B Disk Model . . .
Block (128KB+4KB) Ultrastar 36215 FTL, and a SSD using DFTL. The 99% confidence intervals are
Page Read Tme|  130.0Us Interface SATA very small and hence not shown.
P g Storage Capacit 36.7 GB
age Write Time 405.9 us
" RPM 15,000
Block Erase Time 1.5ms " . . . . .
TNierface SATA Rsee_k T'??e 32-4 msec The specifications available for commercial SSDs are insefft
Garbage Collecto] ~ Yes BN T | oo e to model them accurately. For example, the SRAM cache size fo
Wear-leveling | Implicit/Explicit FTL mappings, the exact FTL scheme used, etc. are not déstlos
FTL Type Page/DFTL e e . K .
Hence, it is difficult to simulate these commercial deviced we

make suitable assumptions for flash device as describedie Ba

MixedSim. We develop a simulation framework for integrated diskUsing these parameters, we validate our flash device siorulat
and flash based storage systems, called MixedSim. It istpign-  part of MixedSim) against commercial SSDs (MTron's SSD ¥ a
hancing Disksim 3.0 [13], a well-regarded HDD simulator.xiti- ~ Super-Talent's SSD [4]) fopehavioral similarity For this purpose,
Sim is designed with a modular architecture with the cajigdip ~ We send raw /O requests to real SSDs and similar traces to our
model a holistic storage environment. It is able to simuttifer- flash device simulator to measure device performance. Awrsho
ent storage sub-system components including device driven-  in Figure 7, our simulator is able to capture the performaneed
trollers, caches, flash devices, disks, and various intexects. In  exhibited by the real SSDs. With increasing sequentialityiites

our integrated simulator, we add the basic infrastructegeired for ~ (Figure 7-(a)), the performance of real SSDs improves arnxet#i
implementing the internal operations (page read, page wlock Sim with different FTLs is able to provide similar charagsécs. In
erase etc.) of a flash-based device. The core FTL engine igimp case of reads (Figure 7-(b)), real SSDs show much less izerjiie

mented to provide virtual-to-physical address transteti@long with ~ same is observed with our simulator. With high degree of camd
a garbage collection mechanism. ness in writes (80% random in Figure 7-(c)) real SSDs dematest

) ) . o . long-tailed response time distribution (due to larger G@rbead)
Notg on Our Evaluation Technique MixedSim is capable of SIM- and our simulator exhibits similar trend. We use page-ba&Hd
ulating multiple HDDs and SSDs. However, for our evaluali® 1004 with other flash parameters for the rest of our evainatiFur-
consider a simple system consisting of a single HDD and SSb wi thermore, by incorporating more knowledge about SSD imlern

the parameters described in Table 6. We understand that our e can further improve the validation of our flash simulatud ¢his
evaluation does not capture benefits/concerns relatedratigdesm g part of our future work.

and fault-tolerance that a system with multiple devicegrstf We ] ]
view our current evaluation as a first step towards undedsigrper- 5.3  Evaluation of MixPlan
formance/cost/lifetime tradeoffs in MixedStore and hopeise the

5Simulations using current state-of-the-art HDDs such ag8e’s 5.3.1 Lifetime BUdget C_:OnStr_amt ) )
Cheetah15K and SSDs such as Intel's X25-M SSD are part of our Table 7 shows the flash device lifetime for various capaday
future work. ning techniques with dynamism-aware data partitioningcgdior
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Table 7: Lifetime observations with different approaches. A
block is assumed to possess 10K reliable erase cycles.

Lifetime (Yr)
Over Provisioned| MixPlan | Under Provisioned
Workload (2GB) (1GB) (0.5GB)
Financial 52.69 7.29 2.67
TPC-H 97.50 21.65 -

Figure 9 demonstrates the improvement in performance and re
duction in cost using MixPlan along with dynamism-awarefqrer
mance predictor for Financial Trace. Both MixPlan and Owevisioning
with static data partitioning are able to meet the lifetinnbaigntees
and improve the response time as compared to an under-jproeis
system. However, as illustrated in Figure 8(a), if dynamanare
data partitioner is utilized along with an over-provisidrftash, we
observe a slight improvement in performance as comparedxe M
Plan. But this small improvement comes at an additional obst

different Worklo_ads. TPC-H is read domine_int_and hence_perfo bigger flash memory. Thus, the cost-to-benefit (Figure 99 rad-
mance budget is of greater concern than lifetime. For Fishnc vocates the use of MixPlan for capacity planning in entegpscale

trace which is a write-dominant workload, we observe thatemn
provisioning capacity would necessitate flash device oeptent
within 3 years and hence would impact the overall lifetimeldet
of MixedStore. We want the flash device to last till aroundukeful
life of disk (approximately 5 years) and both over-provisigy and
MixPlan are able to achieve this mandate. Over-provisfiiiash
capacity should reduce the request response times fromdiéaste
since the garbage collection overheads will be reduced andeh

systems.

As shown in Figure 8(b), for read-dominant TPC-H [52], both
MixPlan and over-provisioned models provide similar perfance.
This can be directly attributed to the fact that read-oednivork-
loads have very small amount of writes, thus the garbageatol
is invoked very infrequently and the service patterns rersanilar
for both the capacity planning methodologies. Figure 8(earty
illustrates the need for dynamism-aware data partitiokExQyn).

improve MixedStore performance as compared to MixPlan. HowStatic partitioning is unable to handle periods of burst€lo re-

ever, as we observe in the next sub-section, benefits aceviied

sulting in poor response times. On the other hand, MixDybis t

this extra flash are much less as compared to the increasedusos respond effectively to such situations and hence providiebper-

to larger flash.

5.3.2 Performance Budget Constraint
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Figure 9: Capacity Planning for Financial Trace. “Static”
denotes a static data-partitioning policy where write reqlests
larger than 4KB are assumed to be sequential and are serviced
by the HDD and others are serviced by SSD. "Dyn. aware" de-
notes an intelligent data partitioning.

formance. Now we evaluate these benefits in the next subpssct

5.4 MixDyn Acting in Concert with MixPlan

We evaluate the performance of prediction models in MixDyn
along with our novel three mechanisms such as (i) adaptia-we
leveling, (ii) write-regulation and (iii) fragmentatiorubting.

5.4.1 Dynamism-Aware Performance Prediction

We integrate our SSD prediction model with an admittedly-sim
ple disk performance predictor. We use a model based on #re av
age response time observed during the training phase t@pdisk
performance. The dynamic controller (MixDyn) partitionste re-
quests depending on the least response times predictea (83D
and HDD models. MixDyn maintains a table to store informatio
about the current location of data (device id) and updatesénever
some data is migrated from one device to the other. Read sexjue
are always serviced from the device which contains the data.

Figure 10(a) illustrates the performance of MixedStoreipo-
rating the prediction models in MixDyn with respect to a d@kily
and flash-only system for the random write dominant Findhciae.
Although we observe good performance from flash device for se
vicing most requests, but some requests suffer from exteridC



overhead thus exhibiting high response time on flash. Ouigre

activity. It halts the wear-leveling algorithm when it det® pro-

tion model is able to move these requests to the disk andachielonged unanticipated 1/0 activity (we use static profilimgdetect

better performance for MixedStore. Moreover, MixedSt@euces

these periods). As compared to the normal wear-levelingrighgm

the average system response time by about 71% as compared twlkich continuously performs leveling irrespective of thesidual

disk-only system. Similar performance improvement is olese for
Cello. However, the limitation of simplistic disk predioti model is
observed for Cello in Figure 10(b) where flash-only systeiproves

lifetime of blocks, our adaptive algorithm is able to impedhe use-
ful lifetime of flash by about 33%. This helps in delaying theed
for replacement and reducing re-deployment costs. Thiblesa

response time by about 20% as compared to MixedStore. The di#ixDyn to achieve the lifetime guarantees as projected byfN&n;

prediction model (in MixedStore) is unable to capture thghhin-
tensity of random writes resulting in incorrect predictioyn Mix-
Dyn since some high latency requests are now inevitably giyon
serviced from disk. We believe with a more sophisticatett gisr-
formance prediction model will alleviate such discrepas@nd im-
prove the performance of MixDyn. We plan to pursue this asqfar
our future work.
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Figure 10: Performance of MixedStore compared with a disk-
only and a flash-only system. (a) and (b) show the CDF of sys-
tem response time for Financial Trace and Cello99.The 99%
confidence intervals are very small and hence not shown.

5.4.2 Adaptive Wear-Leveling
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Figure 12: Adaptive Wear-Leveling. 1x and 2x denote the nor-
mal and unanticipated increase (2 times speed-up) in /O irn-

sity in the Financial trace. 1x-2x denotes a trace with regins of

normal and increased I/O activity. Normal wear-leveling refers

to continuously invoking wear-leveling algorithms irrespective

of the available useful lifetime of blocks on flash.

The lifetime projections made by MixPlan are subject to &iol
tions due to uncertainties (increased unanticipated I/@igg in
the enterprise-scale workloads. Our novel adaptive waaalér helps
MixDyn in upholding these guarantees. Figure 12 shows tipaan
of our adaptive wear-leveler on the Financial trace with ified
inter-arrival times to resemble a workload with periods igfhhl/O

hence both our capacity planning and dynamic-controlieistact in
tandem to achieve the lifetime and performance budgetapyine
ments.

5.4.3 MixDyn at Work: A Microscopic Look

Figure 11 (next page) shows MixDyn at work for parts of the fi-
nancial trace. Our dynamic data partitioner is able to ligeehtly
partition the incoming requests, thus improving the systesponse
time as compared to the static data partitioner. The fragptien
buster is able to reduce the tail of the CDF of response tinge (F
ure 11-(b)), thus reducing the number of requests that e
high response time. We experiment with a write regulatot tea
tects increased I/O activity and consistently monitorsekpeected
flash life through the lifetime model of MixPlan.

We experiment with two models of a static write rate regulato
that pick 25% or 50% (uniformly at random) of the requestsiei
sent to flash and redirect them to HDD during periods of higher
than-expected 1/O intensity. Let us call these policiasizs and
Reds, respectivelyFigure 11-(c) shows that we are able to reduce
the flash block erase rate by about 25% while reducing thesstgu
being serviced by flash by about 21% usiRgd»s. An additional
19% reduction in the erase rate is observed ugiads,. However,
it results in an increase of 0.83ms in average system resgons.
Thus, the rate of write regulation must be chosen judiciosslas to
meet the performance budget while ensuring that lifetinegotees
are satisfied. Thus, MixDyn acting in concert with MixPlaralde
to judiciously utilize the different mechanisms to uphdie tifetime
and performance requirements.

6. CONCLUDING REMARKS

We developed an on-line capacity planner calldixPlan that
used statistical models to provide storage administratdsguide-
lines on provisioning a hybrid system in a cost-effectivennex.
We then developed a dynamic controllstixDyn, that used shorter
time-scale SSD and HDD models along with regulation of write
rate to the SSD and a novel idea of adaptive wear-levelingimvit
the SSD to operate the storage system within regions ofatgsir
cost, performance, and lifetime budgets. We evaluatecethgs-
tems using MixedSim with a variety of well-regarded benchwma
We found that MixedStore is able to reduce the average system
sponse time by about 71% as compared to a HDD-based system for
enterprise-scale Financial trace. Moreover, our inngeagidaptive
wear-leveling mechanism was able to prolong the life of S8Ps
about 33% in the presence of unanticipated increase in tEDgity.
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